Appendix week 7

1) We have shown in the notes that, for all $n \geq 0$ and $0 \leq r \leq n$,

$$
\begin{equation*}
\binom{n}{r}=\frac{n!}{r!(n-r)!} . \tag{1}
\end{equation*}
$$

Note that this means that

$$
\begin{aligned}
\binom{n}{n-r} & =\frac{n!}{(n-r)!(n-(n-r))!} \quad \text { by }(1) \\
& =\frac{n!}{(n-r)!r!}=\binom{n}{r}
\end{aligned}
$$

i.e.

$$
\begin{equation*}
\binom{n}{n-r}=\binom{n}{r} \tag{2}
\end{equation*}
$$

Question Can you prove this result by finding a bijection from $\mathcal{P}_{r}(A)$ to $\mathcal{P}_{n-r}(A)$ when $|A|=n$? (Left to student on problem sheet.)

The result (2) explains the symmetry seen around the centre vertical line in Pascal's triangle.
2) The symmetric form of the Binomial Theorem is

$$
\begin{equation*}
(a+b)^{n}=\sum_{\substack{s=0 \\ s+t=n}}^{n} \sum_{\substack{t=0}}^{n} \frac{n!}{s!t!} a^{s} b^{t} \tag{3}
\end{equation*}
$$

Question What does this double sum mean? In fact, because of the condition $s+t=n,(3)$ is not the double sum it appears to be. To see this look at:

$$
\begin{align*}
\sum_{\substack{s=0 \\
s+t=n}}^{n} \sum_{\substack{t=0}}^{n} \frac{n!}{s!t!} a^{s} b^{t}= & \sum_{s=0}^{n} \frac{n!}{s!} a^{s}\left(\sum_{\substack{t=0 \\
s+t=n}}^{n} \frac{1}{t!} b^{t}\right) \\
& =\underbrace{\frac{n!}{0!} a^{0}\left(\sum_{\substack{t=0 \\
0+t=n}}^{n} \frac{1}{t!} b^{t}\right)}_{s=0 \text { term }}+\underbrace{\frac{n!}{1!} a^{1}\left(\sum_{\substack{t=0 \\
1+t=n}}^{n} \frac{1}{t b^{t}}\right)}_{s=1 \text { term }}+\underbrace{\frac{n!}{2!} a^{2}\left(\sum_{\substack{t=0 \\
2+t=n}}^{n} \frac{1}{t b^{t}}\right)}_{s=2 \text { term }}+\ldots \\
& \ldots+\underbrace{\frac{n!}{(n-1)!} a^{n-1} \underbrace{n}_{\substack{t=0 \\
(n-1)+t=n}} \frac{1}{t!} b^{t})}_{s=n-1 \text { term }}+\underbrace{\left.\frac{n!}{n!} a^{n} \sum_{\substack{t=0 \\
n+t=n}}^{n} \frac{1}{t!} b^{t}\right)}_{s=n \text { term }} \tag{4}
\end{align*}
$$

But because of the $s+t=n$ condition we are only picking out one term from each sum over t. Thus (4) equals

$$
\begin{aligned}
& =\frac{n!}{0!} a^{0} \times \underbrace{\frac{1}{n!} b^{n}}_{t=n \text { term }}+\frac{n!}{1!} a^{1} \times \underbrace{\frac{1}{(n-1)!} b^{n-1}}_{t=n-1 \text { term }}+\frac{n!}{2!} a^{2} \times \underbrace{\frac{1}{(n-2)!} b^{n-2}}_{t=n-2 \text { term }} \ldots \\
& \quad \ldots+\frac{n!}{(n-1)!} a^{n-1} \times \underbrace{\frac{1}{1!} b^{1}}_{t=1 \text { term }}+\frac{n!}{n!} a^{n} \times \underbrace{\frac{1}{0!} b^{0}}_{t=0 \text { term }} \\
& =b^{n}+n a b^{n-1}+\frac{n!}{2!(n-2)!} a^{2} b^{n-2}+\ldots n a^{n-1} b+a^{n} \\
& =\sum_{r=0}^{n}\binom{n}{r} b^{n-r} a^{r} .
\end{aligned}
$$

So the "double" sum equals the single sum!
3) In the notes we defined functions between $\mathcal{P}(A)$ and $\operatorname{Fun}(A,\{0,1\})$ by

$$
\begin{aligned}
\alpha: \mathcal{P}(A) & \rightarrow \operatorname{Fun}(A,\{0,1\}), \\
C & \mapsto \chi_{C}
\end{aligned}
$$

for all $C \subseteq A$, and

$$
\begin{aligned}
\beta: \operatorname{Fun}(A,\{0,1\}) & \rightarrow P(A), \\
f & \mapsto C_{f}
\end{aligned}
$$

for all $f: A \rightarrow\{0,1\}$. Here

$$
\chi_{C}(a)= \begin{cases}1 & \text { if } a \in C \tag{5}\\ 0 & \text { if } a \notin C,\end{cases}
$$

and

$$
\begin{equation*}
C_{f}=\{a \in A: f(a)=1\} . \tag{6}
\end{equation*}
$$

A result unproved in the notes was:
Theorem 1 The functions α and β defined above are inverses of each other.
Proof We have to show that $\beta \circ \alpha$ is the identity map on $\mathcal{P}(A)$ and that $\alpha \circ \beta$ is the identity map on $\operatorname{Fun}(A,\{0,1\})$.

In other words

$$
\begin{equation*}
\beta \circ \alpha(C)=C \quad \text { for all } C \in \mathcal{P}(A), \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
\alpha \circ \beta(f)=f \quad \text { for all } f \in \operatorname{Fun}(A,\{0,1\}) \tag{8}
\end{equation*}
$$

To prove (7) let $C \in \mathcal{P}(A)$, i.e. $C \subseteq A$. Then

$$
\beta \circ \alpha(C)=\beta\left(\chi_{C}\right)=C_{\chi_{C}} .
$$

Is $C_{\chi_{C}}=C$? By (6) we have

$$
\begin{aligned}
C_{\chi_{C}} & =\left\{a \in A: \chi_{C}(a)=1\right\} \\
& =\{a \in A: a \in C\} \quad \text { by }(5) \\
& =C .
\end{aligned}
$$

Hence $\beta \circ \alpha$ is the identity on $\mathcal{P}(A)$.

To prove (8) let $f \in \operatorname{Fun}(A,\{0,1\})$. Then

$$
\alpha \circ \beta(f)=\alpha\left(C_{f}\right)=\chi_{C_{f}} .
$$

Is $\chi_{C_{f}}=f$? From (5) we have

$$
\begin{aligned}
\chi_{C_{f}}(a) & = \begin{cases}1 & \text { if } a \in C_{f} \\
0 & \text { if } a \notin C_{f},\end{cases} \\
& =\left\{\begin{array}{ll}
1 & \text { if } f(a)=1 \\
0 & \text { if } f(a)=0
\end{array} \quad \text { by definition of } C_{f}\right. \\
& =f(a)
\end{aligned}
$$

Hence $\alpha \circ \beta$ is the identity function on $\operatorname{Fun}(A,\{0,1\})$.
Therefore α and β are inverses.
4) Assume there exists a bijection $f: A \rightarrow B$. Extend this to a function on $\mathcal{P}(A)$ by the definition

$$
\begin{aligned}
\vec{f}: \mathcal{P}(A) & \rightarrow \mathcal{P}(B) \\
C & \mapsto \vec{f}(C)=\{f(c): c \in C\} .
\end{aligned}
$$

So, for all $C \in \mathcal{P}(A)$, (i.e. $C \subseteq A$), $\vec{f}(C)$ is the set of all images of elements in C. These images lie in B (since $f: A \rightarrow B$) and so $\vec{f}(C) \subseteq B$ and thus $\vec{f}(C) \in \mathcal{P}(B)$. Therefore $\vec{f}: \mathcal{P}(A) \rightarrow \mathcal{P}(B)$ as stated.

Since f is a bijection it has an inverse f^{-1}. Thus we can define a function on $\mathcal{P}(B)$ by

$$
\begin{aligned}
\overleftarrow{f}: \mathcal{P}(B) & \rightarrow \mathcal{P}(A) \\
D & \mapsto \overleftarrow{f}(D)=\left\{f^{-1}(d): d \in D\right\}
\end{aligned}
$$

So, for all $D \in \mathcal{P}(B), \overleftarrow{f}(D)$ is the set of all pre-images of elements in D These images lie in A (since $f^{-1}: B \rightarrow A$) and so $\overleftarrow{f}(D) \subseteq A$ and thus $\overleftarrow{f}(D) \in \mathcal{P}(A)$. Therefore $\overleftarrow{f}: \mathcal{P}(B) \rightarrow \mathcal{P}(A)$ as stated

Theorem 2 Given a bijection $f: A \rightarrow B$ the extensions $\vec{f}: \mathcal{P}(A) \rightarrow \mathcal{P}(B)$ and $\overleftarrow{f}: \mathcal{P}(B) \rightarrow \mathcal{P}(A)$ as defined above are inverses of each other.

Proof We have to check that $\overleftarrow{f} \circ \vec{f}$ and $\vec{f} \circ \overleftarrow{f}$ are identities on $\mathcal{P}(A)$ and $\mathcal{P}(B)$ respectively.
To prove that $\overleftarrow{f} \circ \vec{f}$ is an identity on $\mathcal{P}(A)$
Let $C \in \mathcal{P}(A)$ be given. Then

$$
\begin{aligned}
\overleftarrow{f} \circ \vec{f}(C) & =\overleftarrow{f}(\vec{f}(C)) \\
& =\overleftarrow{f}(\{f(c): c \in C\}) \\
& =\left\{f^{-1}(f(c)): c \in C\right\} \\
& =\{c: c \in C\} \\
& =C
\end{aligned}
$$

Hence $\overleftarrow{f} \circ \vec{f}$ is the identity on $\mathcal{P}(A)$
To prove that $\vec{f} \circ \overleftarrow{f}$ is an identity on $\mathcal{P}(B)$
Let $D \in \mathcal{P}(B)$ be given. Then

$$
\begin{aligned}
\vec{f} \circ \overleftarrow{f}(D) & =\vec{f}(\overleftarrow{f}(D)) \\
& =\vec{f}\left(\left\{f^{-1}(d): d \in D\right\}\right) \\
& =\left\{f\left(f^{-1}(d)\right): d \in D\right\} \\
& =\{d: d \in D\} \\
& =D
\end{aligned}
$$

Hence $\vec{f} \circ \overleftarrow{f}$ is the identity on $\mathcal{P}(B)$
From this result we immediately deduce that if $|A|=|B|$ (which implies the existence of a bijection between A and B) then $|\mathcal{P}(A)|=|\mathcal{P}(B)|$. With an extra observation we showed in the notes that $\left|\mathcal{P}_{r}(A)\right|=\left|\mathcal{P}_{r}(B)\right|$ for all $0 \leq r \leq|A|$. This means that the definition of the Binomial number is independent of the set A chosen in the definition.
5) Within the proof of

$$
\left|\mathcal{P}_{r}(A)\right|=\left|\mathcal{P}_{r-1}(A \backslash\{a\}) \cup \mathcal{P}_{r}(A \backslash\{a\})\right|
$$

we define maps

$$
\begin{aligned}
\alpha & : \mathcal{P}_{r}(A) \rightarrow \mathcal{P}_{r-1}(A \backslash\{a\}) \cup \mathcal{P}_{r}(A \backslash\{a\}) \\
C & \mapsto \begin{cases}C \backslash\{a\} & \text { if } a \in C \\
C & \text { if } a \notin C,\end{cases}
\end{aligned}
$$

and

$$
\begin{aligned}
\beta & : \mathcal{P}_{r-1}(A \backslash\{a\}) \cup \mathcal{P}_{r}(A \backslash\{a\}) \rightarrow \mathcal{P}_{r}(A) \\
D & \mapsto \begin{cases}D & \text { if }|D|=r \\
D \cup\{a\} & \text { if }|D|=r-1 .\end{cases}
\end{aligned}
$$

The first thing done in the proof was to show that

$$
\operatorname{Im} \alpha \subseteq \mathcal{P}_{r-1}(A \backslash\{a\}) \cup \mathcal{P}_{r}(A \backslash\{a\}) \quad \text { and } \quad \operatorname{Im} \beta \subseteq \mathcal{P}_{r}(A)
$$

But what wasn't shown in the lectures was that α and β are inverses.
Theorem 3 The functions α and β defined above are inverses of each other.
Proof This requires showing that $\beta \circ \alpha$ is the identity on $\mathcal{P}_{r}(A)$ and $\alpha \circ \beta$ is the identity on $\mathcal{P}_{r-1}(A \backslash\{a\}) \cup \mathcal{P}_{r}(A \backslash\{a\})$.
Looking first at $\beta \circ \alpha$ let $C \in \mathcal{P}_{r}(A)$ be given. There are two cases.
i . If $a \in C$ then $\alpha(C)=C \backslash\{a\}$. But then

$$
\begin{aligned}
\beta(\alpha(C)) & =\beta(C \backslash\{a\}) \\
& =(C \backslash\{a\}) \cup\{a\} \quad \text { since }|C \backslash\{a\}|=r-1 \\
& =C .
\end{aligned}
$$

ii . If $a \notin C$ then $\alpha(C)=C$ and

$$
\beta(\alpha(C))=\beta(C)=C,
$$

since $|C|=r$. So in both cases $\beta(\alpha(C))=C$, i.e. $\beta \circ \alpha(C)=C$. True for all $C \in \mathcal{P}_{r}(A)$ means that $\beta \circ \alpha$ is the identity on $\mathcal{P}_{r}(A)$.

Next looking at $\alpha \circ \beta$ let $D \in \mathcal{P}_{r-1}(A \backslash\{a\}) \cup \mathcal{P}_{r}(A \backslash\{a\})$ be given. Again we have two cases (and since the union is disjoint there is no overlap in the cases).
i . If $|D|=r-1$ then $\beta(D)=D \cup\{a\}$. But then

$$
\begin{aligned}
\alpha(\beta(D)) & =\alpha(D \cup\{a\}) \\
& =(D \cup\{a\}) \backslash\{a\} \quad \text { since } a \in D \cup\{a\} \\
& =D .
\end{aligned}
$$

ii . If $|D|=r$ then $\beta(D)=D$ and

$$
\begin{aligned}
\alpha(\beta(D)) & =\alpha(D) \\
& =D \text { since } a \notin D(\text { recall that } D \subseteq A \backslash\{a\})
\end{aligned}
$$

So in both cases $\alpha(\beta(D))=D$, i.e. $\alpha \circ \beta(D)=D$. True for all $D \in \mathcal{P}_{r-1}(A \backslash\{a\}) \cup \mathcal{P}_{r}(A \backslash\{a\})$ means that $\alpha \circ \beta$ is the identity on $\mathcal{P}_{r-1}(A \backslash\{a\}) \cup \mathcal{P}_{r}(A \backslash\{a\})$.

Thus we have a bijection $\mathcal{P}_{r}(A) \rightarrow \mathcal{P}_{r-1}(A \backslash\{a\}) \cup \mathcal{P}_{r}(A \backslash\{a\})$.

