Appendix week 7

1) We have shown in the notes that, for all $n \ge 0$ and $0 \le r \le n$,

$$\binom{n}{r} = \frac{n!}{r! (n-r)!}.$$
(1)

Note that this means that

i.e.

$$\binom{n}{n-r} = \frac{n!}{(n-r)! (n-(n-r))!} \quad \text{by (1)},$$

$$= \frac{n!}{(n-r)!r!} = \binom{n}{r}.$$

$$\binom{n}{n-r} = \binom{n}{r}.$$

$$(2)$$

Question Can you prove this result by finding a bijection from $\mathcal{P}_r(A)$ to $\mathcal{P}_{n-r}(A)$ when |A| = n? (Left to student on problem sheet.)

The result (2) explains the symmetry seen around the centre vertical line in Pascal's triangle.

Appendix week 7

2) The symmetric form of the Binomial Theorem is

$$(a+b)^{n} = \sum_{\substack{s=0\\s+t=n}}^{n} \sum_{\substack{t=0\\s+t=n}}^{n} \frac{n!}{s!t!} a^{s} b^{t}$$
(3)

Question What does this double sum mean? In fact, because of the condition s + t = n, (3) is **not** the double sum it appears to be. To see this look at:

$$\sum_{\substack{s=0\\s+t=n}}^{n} \sum_{\substack{t=0\\s+t=n}}^{n} \frac{n!}{s!t!} a^{s} b^{t} = \sum_{s=0}^{n} \frac{n!}{s!} a^{s} \left(\sum_{\substack{t=0\\s+t=n}}^{n} \frac{1}{t!} b^{t} \right)$$

$$= \underbrace{\frac{n!}{0!} a^{0} \left(\sum_{\substack{t=0\\0+t=n}}^{n} \frac{1}{t!} b^{t} \right)}_{s=0 \text{ term}} + \underbrace{\frac{n!}{1!} a^{1} \left(\sum_{\substack{t=0\\1+t=n}}^{n} \frac{1}{t!} b^{t} \right)}_{s=1 \text{ term}} + \underbrace{\frac{n!}{2!} a^{2} \left(\sum_{\substack{t=0\\2+t=n}}^{n} \frac{1}{t!} b^{t} \right)}_{s=2 \text{ term}} + \dots$$

$$\dots + \underbrace{\frac{n!}{(n-1)!} a^{n-1} \left(\sum_{\substack{t=0\\(n-1)+t=n}}^{n} \frac{1}{t!} b^{t} \right)}_{s=n-1 \text{ term}} + \underbrace{\frac{n!}{n!} a^{n} \left(\sum_{\substack{t=0\\n+t=n}}^{n} \frac{1}{t!} b^{t} \right)}_{s=n \text{ term}} (4)$$

But because of the s + t = n condition we are only picking out *one* term from each sum over t. Thus (4) equals

So the "double" sum equals the single sum!

3) In the notes we defined functions between $\mathcal{P}(A)$ and $Fun(A, \{0, 1\})$ by

$$\alpha : \mathcal{P}(A) \rightarrow Fun(A, \{0, 1\}),$$
$$C \mapsto \chi_C$$

for all $C \subseteq A$, and

$$\beta : Fun(A, \{0, 1\}) \rightarrow P(A),$$

 $f \mapsto C_f$

for all $f: A \to \{0, 1\}$. Here

$$\chi_C(a) = \begin{cases} 1 & \text{if } a \in C \\ 0 & \text{if } a \notin C, \end{cases}$$
(5)

and

$$C_f = \{ a \in A : f(a) = 1 \}.$$
(6)

A result unproved in the notes was:

Theorem 1 The functions α and β defined above are inverses of each other.

Proof We have to show that $\beta \circ \alpha$ is the identity map on $\mathcal{P}(A)$ and that $\alpha \circ \beta$ is the identity map on $Fun(A, \{0, 1\})$.

In other words

$$\beta \circ \alpha (C) = C \quad \text{for all } C \in \mathcal{P}(A),$$
(7)

and

$$\alpha \circ \beta (f) = f \quad \text{for all } f \in Fun (A, \{0, 1\})$$
(8)

To prove (7) let $C \in \mathcal{P}(A)$, i.e. $C \subseteq A$. Then

$$\beta \circ \alpha \left(C \right) = \beta \left(\chi_C \right) = C_{\chi_C}.$$

Is $C_{\chi_C} = C$? By (6) we have

$$C_{\chi_C} = \{a \in A : \chi_C(a) = 1\}$$

= $\{a \in A : a \in C\}$ by (5)
= C.

Hence $\beta \circ \alpha$ is the identity on $\mathcal{P}(A)$.

To prove (8) let $f \in Fun(A, \{0, 1\})$. Then

$$\alpha \circ \beta \left(f \right) = \alpha \left(C_f \right) = \chi_{C_f}.$$

Is $\chi_{C_f} = f$? From (5) we have

$$\chi_{C_f}(a) = \begin{cases} 1 & \text{if } a \in C_f \\ 0 & \text{if } a \notin C_f, \end{cases}$$
$$= \begin{cases} 1 & \text{if } f(a) = 1 \\ 0 & \text{if } f(a) = 0 \end{cases} \quad \text{by definition of } C_f$$
$$= f(a)$$

Hence $\alpha \circ \beta$ is the identity function on $Fun(A, \{0, 1\})$.

Therefore α and β are inverses.

4) Assume there exists a bijection $f : A \to B$. Extend this to a function on $\mathcal{P}(A)$ by the definition

$$\vec{f} : \mathcal{P}(A) \rightarrow \mathcal{P}(B)$$

 $C \mapsto \vec{f}(C) = \{f(c) : c \in C\}.$

So, for all $C \in \mathcal{P}(A)$, (i.e. $C \subseteq A$), $\overrightarrow{f}(C)$ is the set of all images of elements in C. These images lie in B (since $f : A \to B$) and so $\overrightarrow{f}(C) \subseteq B$ and thus $\overrightarrow{f}(C) \in \mathcal{P}(B)$. Therefore $\overrightarrow{f}: \mathcal{P}(A) \to \mathcal{P}(B)$ as stated.

Since f is a bijection it has an inverse f^{-1} . Thus we can define a function on $\mathcal{P}(B)$ by

$$\begin{aligned} \overleftarrow{f} : \mathcal{P}(B) &\to \mathcal{P}(A) \\ D &\mapsto \overleftarrow{f}(D) = \left\{ f^{-1}(d) : d \in D \right\}, \end{aligned}$$

So, for all $D \in \mathcal{P}(B)$, $\overleftarrow{f}(D)$ is the set of all pre-images of elements in D. These images lie in A (since $f^{-1}: B \to A$) and so $\overleftarrow{f}(D) \subseteq A$ and thus $\overleftarrow{f}(D) \in \mathcal{P}(A)$. Therefore $\overleftarrow{f}: \mathcal{P}(B) \to \mathcal{P}(A)$ as stated.

Theorem 2 Given a bijection $f : A \to B$ the extensions $\overrightarrow{f} : \mathcal{P}(A) \to \mathcal{P}(B)$ and $\overleftarrow{f} : \mathcal{P}(B) \to \mathcal{P}(A)$ as defined above are inverses of each other.

Proof We have to check that $\overleftarrow{f} \circ \overrightarrow{f}$ and $\overrightarrow{f} \circ \overleftarrow{f}$ are identities on $\mathcal{P}(A)$ and $\mathcal{P}(B)$ respectively.

To prove that $\overleftarrow{f} \circ \overrightarrow{f}$ is an identity on $\mathcal{P}(A)$

Let $C \in \mathcal{P}(A)$ be given. Then

$$\overrightarrow{f} \circ \overrightarrow{f} (C) = \overleftarrow{f} (\overrightarrow{f} (C))$$

$$= \overleftarrow{f} (\{f (c) : c \in C\})$$

$$= \{f^{-1} (f (c)) : c \in C\}$$

$$= \{c : c \in C\}$$

$$= C.$$

Hence $\overleftarrow{f} \circ \overrightarrow{f}$ is the identity on $\mathcal{P}(A)$.

To prove that $\overrightarrow{f} \circ \overleftarrow{f}$ is an identity on $\mathcal{P}(B)$ Let $D \in \mathcal{P}(B)$ be given. Then

$$\frac{1}{2} \left\langle \frac{1}{2} \right\rangle = \frac{1}{2} \left\langle \frac{1}{2} \right\rangle$$

$$f \circ f (D) = f (f (D))$$
$$= \overrightarrow{f} (\{f^{-1}(d) : d \in D\})$$
$$= \{f (f^{-1}(d)) : d \in D\}$$
$$= \{d : d \in D\}$$
$$= D.$$

Hence $\overrightarrow{f} \circ \overleftarrow{f}$ is the identity on $\mathcal{P}(B)$.

From this result we immediately deduce that if |A| = |B| (which implies the existence of a bijection between A and B) then $|\mathcal{P}(A)| = |\mathcal{P}(B)|$. With an extra observation we showed in the notes that $|\mathcal{P}_r(A)| = |\mathcal{P}_r(B)|$ for all $0 \leq r \leq |A|$. This means that the definition of the Binomial number is independent of the set A chosen in the definition. **5**) Within the proof of

$$\left|\mathcal{P}_{r}\left(A\right)\right| = \left|\mathcal{P}_{r-1}\left(A \setminus \{a\}\right) \cup \mathcal{P}_{r}\left(A \setminus \{a\}\right)\right|$$

we define maps

$$\alpha : \mathcal{P}_r(A) \to \mathcal{P}_{r-1}(A \setminus \{a\}) \cup \mathcal{P}_r(A \setminus \{a\})$$
$$C \mapsto \begin{cases} C \setminus \{a\} & \text{if } a \in C \\ C & \text{if } a \notin C, \end{cases}$$

and

$$\beta : \mathcal{P}_{r-1} \left(A \setminus \{a\} \right) \cup \mathcal{P}_r \left(A \setminus \{a\} \right) \to \mathcal{P}_r \left(A \right)$$
$$D \mapsto \begin{cases} D & \text{if } |D| = r \\ D \cup \{a\} & \text{if } |D| = r-1. \end{cases}$$

The first thing done in the proof was to show that

Im
$$\alpha \subseteq \mathcal{P}_{r-1}(A \setminus \{a\}) \cup \mathcal{P}_r(A \setminus \{a\})$$
 and Im $\beta \subseteq \mathcal{P}_r(A)$.

But what wasn't shown in the lectures was that α and β are inverses.

Theorem 3 The functions α and β defined above are inverses of each other.

Proof This requires showing that $\beta \circ \alpha$ is the identity on $\mathcal{P}_r(A)$ and $\alpha \circ \beta$ is the identity on $\mathcal{P}_{r-1}(A \setminus \{a\}) \cup \mathcal{P}_r(A \setminus \{a\})$.

Looking first at $\beta \circ \alpha$ let $C \in \mathcal{P}_r(A)$ be given. There are two cases.

i . If $a \in C$ then $\alpha(C) = C \setminus \{a\}$. But then

$$\beta(\alpha(C)) = \beta(C \setminus \{a\})$$

= $(C \setminus \{a\}) \cup \{a\}$ since $|C \setminus \{a\}| = r - 1$
= C .

ii . If $a \notin C$ then $\alpha(C) = C$ and

$$\beta\left(\alpha\left(C\right)\right) = \beta\left(C\right) = C,$$

since |C| = r. So in both cases $\beta(\alpha(C)) = C$, i.e. $\beta \circ \alpha(C) = C$. True for all $C \in \mathcal{P}_r(A)$ means that $\beta \circ \alpha$ is the identity on $\mathcal{P}_r(A)$.

Next looking at $\alpha \circ \beta$ let $D \in \mathcal{P}_{r-1}(A \setminus \{a\}) \cup \mathcal{P}_r(A \setminus \{a\})$ be given. Again we have two cases (and since the union is disjoint there is no overlap in the cases).

i . If
$$|D| = r - 1$$
 then $\beta(D) = D \cup \{a\}$. But then
 $\alpha(\beta(D)) = \alpha(D \cup \{a\})$
 $= (D \cup \{a\}) \setminus \{a\}$ since $a \in D \cup \{a\}$
 $= D$.

ii . If |D| = r then $\beta(D) = D$ and

$$\begin{aligned} \alpha\left(\beta\left(D\right)\right) &= & \alpha\left(D\right) \\ &= & D \quad \text{since } a \notin D \text{ (recall that } D \subseteq A \setminus \{a\} \text{).} \end{aligned}$$

So in both cases $\alpha(\beta(D)) = D$, i.e. $\alpha \circ \beta(D) = D$. True for all $D \in \mathcal{P}_{r-1}(A \setminus \{a\}) \cup \mathcal{P}_r(A \setminus \{a\})$ means that $\alpha \circ \beta$ is the identity on $\mathcal{P}_{r-1}(A \setminus \{a\}) \cup \mathcal{P}_r(A \setminus \{a\})$.

Thus we have a bijection $\mathcal{P}_r(A) \to \mathcal{P}_{r-1}(A \setminus \{a\}) \cup \mathcal{P}_r(A \setminus \{a\})$.